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Abstract 

The lack of infrastructure and specialized clinicians 
have led to reduced diagnoses and treatment of cardiac 
conditions for children in developing countries. An 
important tool for improved screening for cardiac 
abnormalities is the phonocardiogram (PCG). The PCG 
non-invasively records heart sounds, allowing for the 
observation of murmurs, which are abnormal heart 
sounds that may indicate underlying cardiac disease.  

This study is part of the Heart Murmur Detection from 
Phonocardiogram Recordings: The George B. Moody 
PhysioNet Challenge 2022. For our approach, we 
employed wavelet time scattering and support vector 
machines to determine the classification of each PCG 
recording based on the features from the signals alone. 
The classification for each of the recording locations, as 
well as the demographic information (height, weight, age, 
sex), was then fed into a naïve Bayes classifier to 
determine the patient’s overall classification. 

For team Eagles, our murmur detection classifier 
received a weighted accuracy score of 0.467 on the 
validation set and a score of 0.525 (ranked 33 out of 40 
teams) on the hidden test set. Our outcome classification 
achieved a cost of 10559 on the validation set, but we did 
not receive an official Challenge cost score for the hidden 
test set.  

 
 

1. Introduction 

The lack of infrastructure and specialized clinicians 
have led to reduced diagnoses and treatment of cardiac 
conditions for children in developing countries. Early 
detection is particularly important since increased 
morbidity and mortality are associated with delayed 
diagnosis of congenital heart disease (CHD) in children 
[1,2]. Consequently, insufficient clinical resources in 
these developing countries which lead to missed and/or 
delayed diagnoses have resulted in a significant public 
health concern [3-5]. 

An important low-cost tool for improved screening for 

cardiac abnormalities is the phonocardiogram (PCG). The 
PCG non-invasively records heart sounds, allowing for 
the observation of murmurs, which are abnormal heart 
sounds caused by turbulent blood that sometimes 
indicates underlying cardiac disease. Sample PCG signals 
are shown in Figure 1.  

 

 

 

 

 
Figure 1. Phonocardiogram signals from four prominent 
recording locations: atrial valve (AV), mitral valve (MV), 
pulmonic valve (PV), and tricuspid valve (TV). Duration 
of each of the signals shown in the figure is 0.3 seconds; 
recordings are obtained sequentially from the different 
locations. 
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Murmurs in children are generally classified into two 
groups, according to whether or not the murmurs occur 
due to underlying structural issues of the heart. Murmurs 
that are not associated with underlying issues are called 
“innocent” or “functional” murmurs and do not typically 
require treatment. However, murmurs can also indicate 
the presence of defects in the septum, ductus arteriosus, 
and/or cardiac valves; these types of murmurs indicate 
structural issues and do typically require clinical 
intervention. Congenital heart valve disease frequently 
occurs due to malformed pulmonic or aortic valves [6]. 
These malformations may involve valves with an 
insufficient number of tissue flaps or an improper size or 
shape, or they may be missing a pathway through which 
blood may correctly flow. Congenital heart valve disease 
can cause regurgitation (valve does not completely close, 
resulting in backflow) or stenosis (valve does not 
completely open, resulting in insufficient blood flow 
through the valve).  

The objective of the 2022 George B. Moody 
PhysioNet Challenge is to utilize multiple PCG 
recordings taken from a single patient to determine the 
presence, absence, or unclear case of murmurs for each 
patient as well as normal or abnormal clinical outcome 
[7,8]. By using a large publicly available dataset for 
training and a hidden test set, the robustness of the results 
is properly validated. Furthermore, by making the code 
submitted by all Challenge participants public, the results 
will be reproducible, allowing for rapid progress on this 
important research question. 
 
2. Methods 
 
2.1 Data Description 

The training set consisted of 3163 recordings obtained 
from 942 patients in northern Brazil. All patients were 21 
years old or younger at the time of the screening. 
Recordings were obtained sequentially from one or more 
of the typical auscultation locations: mitral valve (MV), 
aortic valve (AV), pulmonic valve (PV), and tricuspid 
valve (TV). An option for “other” location, meant to 
differentiate from these four valve locations, was also 
provided in the dataset. A complete description of the 
data collection process and the resulting dataset can be 
found in [9].  

 
2.2 Pre-processing 

In order to prepare the signals for analysis, several pre-
processing steps were executed. First, we resampled the 
signals to 4000Hz to ensure that all the signals were 
analysed at a consistent rate. Next, we standardized the 

signal length to be five seconds; this involved either 
clipping longer signals or zero padding if the signals were 
too short. This pre-processing step is useful since fixed 
signal lengths are needed for various machine learning 
algorithms. Finally, we performed z-score normalization, 
with a range from -1 to 1, in order to have a consistent 
magnitude among the signals. These steps are 
summarized in Figure 2. 

 
Figure 2. Pre-processing steps applied on the input 
signals prior to classification. 
 
2.3 Challenge Algorithms 

Wavelet scattering was used for feature extraction; this 
technique is useful in order to obtain low-variance 
features from time series data. These features tend to be 
stable with respect to time-warping deformations [10]. 
Furthermore, wavelet scattering has the benefit of only 
requiring the length of the scale invariant to be specified, 
which in this case we set equal to the length of the signal. 
The scattering network consists of two filter banks; the 
first contains eight wavelets per octave, and the second 
has one wavelet per octave. 

The derived features were used to separately train four 
multiclass support vector machine (SVM) classifiers [11], 
one for each of recording locations based on the signals 
extracted from that location (MV, AV, PV, and TV). We 
note that not all patients had PCG signals recorded from 
all four locations. A linear kernel was utilized for these 
SVMs. The “other” location was excluded from this 
analysis, due to the potential variability in the actual 
physical recording location, making it unreasonable to 
group together signals from this class. SVMs were 
selected due to their ability to perform well for 
classification of small or medium sized datasets and scale 
well with the number of features, especially if they are 
sparse [12]. 

The results from each of the four SVM classifiers, as 
well as the corresponding patient’s demographic 
information (height, weight, age group, sex), were then 
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fed into a naïve Bayes classifier in order to determine the 
patient’s overall murmur classification. Demographic 
information can provide additional useful insights into 
appropriate patient classification, so they were included 
in this analysis. The same approach was taken in order to 
determine the clinical outcome. The algorithmic approach 
is summarized in Figure 3. 

There are two scoring metrics used in the Challenge, 
which are described in detail in [7]. For murmur 
identification, a weighted accuracy score is computed. 
For this metric, higher scores indicate better performance. 
For outcome classification, a cost metric is computed, so 
lower values indicate better performance. 

 

 
 
Figure 3. Algorithmic approach to the two Challenge 
classification tasks. Four signals (at most) are input into 
four separate SVMs; the outputs of the SVMs and the 
demographic info are fed into a naïve Bayes classifier to 
produce the final classification output. 
 
3. Results 

For murmur identification, the F-measure on the 
training set was 0.106, and the F-measure on the 
validation set was 0.102. For outcome classification, the 
F-measure on the training set was 0.933, and the F-
measure for the validation set was 0.444. The training 
time for murmur identification was 4 minutes and 47 
seconds; model run time was 28 seconds. The training 
time for outcome classification was 12 minutes and 37 
seconds; model run time was 27 seconds. 

In the Official Phase, the best performing entry on the 
validation set for team Eagles received a weighted 
accuracy score of 0.467 for murmur identification and a 
cost of 10559 for outcome classification. Our algorithm 
received a weighted accuracy score of 0.525 on the 
hidden test set for murmur identification, ranking 33rd 

place out of 40 teams. Our algorithm failed on the hidden 
test set for the cost metric, so we do not have official 
results to report for that objective. These results are 
summarized in Tables 1 and 2.  

 
Training Validation Test Ranking 

0.499 0.467 0.525 33/40 
Table 1. Weighted accuracy metric scores for our final 
selected entry for the murmur detection task, including 
the ranking of our team on the hidden test set.  

Training Validation Test Ranking 
5794 10559 N/A N/A 

Table 2. Cost metric scores for our final selected entry for 
the clinical outcome identification task. Our team did not 
receive a score on the hidden test set, so there is no 
official ranking.  

Analysis of 305 successful entries from the 
leaderboard for murmur classification at the conclusion of 
the official phase revealed the following. The fastest 
training run was achieved by uestc-team, which computed 
in less than a second and is ranked as 178th out of 305 
entries; the longest training run was submitted by 
PathToMyHeart, with a run time of over 68 hours and is 
ranked as 9th out of 305 entries. Furthermore, as expected, 
model run times were significantly shorter than training 
time, but there was still a very wide range. The fastest 
model run time was less than a second by team Simulab 
(182/305). The longest model run time was just over 13 
hours by team listNto_urHeart (128/305). Weighted 
average scores ranged from 0.166 to 0.806, with a mean 
of 0.595 and standard deviation of 0.125, across the 305 
submissions. 
 
4. Discussion and Conclusions 

The methods presented in this paper have the 
advantage of very fast compute time, which is particularly 
useful in terms of practical clinical utility. Specifically, 
for the validation set, the training time was 4 minutes and 
47 seconds, and the model run time was 28 seconds. 
However, the classification accuracy for our method is 
much lower than most of the other teams who participated 
in the Challenge, so significant improvement is needed to 
increase the accuracy. Furthermore, we did not receive an 
official score for the cost metric for the test set; since we 
are unable to evaluate performance on this test set 
independently, the cause for the error is unknown. 
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